Mathematical Finance Dylan Possamaï

Assignment 7

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a filtration \mathbb{F} , unless otherwise stated.

A large financial market

We take here as a probability space $\Omega := [0, 1]$, \mathcal{F} the Borel- σ -algebra on [0, 1], and as probability measure \mathbb{P} the Lebesgue measure on [0, 1]. We consider then a financial market with time-horizon 1, and with countably many risky assets with (discounted) prices $(S^n)_{n \in \mathbb{N}}$ which are given for any $n \in \mathbb{N}$ by

$$S_t^n := 0, \ t \in [0,1), \ S_1^n(x) := \begin{cases} -x^{-1/2}, \ \text{if } x \in [0,\varepsilon_n), \\ (1-x)^{-\frac{1}{n+1}}, \ \text{if } x \in [\varepsilon_n,1], \end{cases}$$

where the sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ takes values in (0,1), and converges to 0 as n goes to $+\infty$. We take for \mathbb{F} the natural filtration generated by $(S^n)_{n\in\mathbb{N}}$.

- 1) Show that it is possible to choose the sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ such that $\mathbb{E}^{\mathbb{P}}[S_1^n] = 1$ for all $n \in \mathbb{N}$.
- 2) We now want to prove that \mathbb{P} is a separating measure for this market. Show that it is enough for this to prove that for any $n \in \mathbb{N}$ and any sequence $(c_k)_{k \in \{0,...,n\}}$ such that $\sum_{k=0}^{n} c_k S_1^k$ is bounded from below, we have

$$\mathbb{E}^{\mathbb{P}}\bigg[\sum_{k=0}^{n} c_k S_1^k\bigg] \le 0$$

and deduce that $\mathbb P$ is indeed a separating measure.

3) Prove that there cannot exist an equivalent σ -martingale measure on this market, and comment.

On separating measures

Consider a financial market where discounted prices are given by $S := (S^1, \ldots, S^d_t)_{t \in [0,T]}^\top$ which is a *d*-dimensional (\mathbb{F}, \mathbb{P}) -semi-martingale and let \mathbb{Q} be a measure equivalent to \mathbb{P} on \mathcal{F}_T

- 1) Assume that \mathcal{F}_0 is trivial and that \mathbb{Q} is a separating measure for S. Show that if S is (\mathbb{F}, \mathbb{P}) -locally bounded, then \mathbb{Q} is an equivalent local martingale measure for S.
- 2) Assume that \mathbb{Q} is an equivalent (\mathbb{F}, \mathbb{Q}) - σ -martingale measure for S. Show that it is also an equivalent separating measure.
- 3) Now assume that d = 1, that $(\mathcal{F}_t)_{t \in [0,T]}$ is the natural (\mathbb{P} -completed) filtration of S and that the process $S = (S_t)_{t \in [0,T]}$ is of the form

$$S_t = \begin{cases} 0, \text{ if } 0 \le t < T, \\ X, \text{ if } t = T, \end{cases}$$

where X is normally distributed with mean $\mu \neq 0$ and variance $\sigma^2 > 0$ under \mathbb{P} . Show that in this case, the class $\mathcal{M}_{sep}(S, \mathbb{F}, \mathbb{P})$ of equivalent separating measures for S is strictly bigger than $\mathcal{M}_{\sigma}(S, \mathbb{F}, \mathbb{P})$.

Stop-loss start-gain strategy

Let the financial market on $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P}), T < \infty$, be described by a reference asset $S^0 = 1$ and one risky asset S being a geometric Brownian motion, i.e.

$$\mathrm{d}S_t = S_t \big(\mu \mathrm{d}t + \sigma \mathrm{d}W_t \big), \ S_0 = s_0 > 0, \tag{0.1}$$

for some given constants $\mu \in \mathbb{R}, \sigma > 0$.

Fix K > 0. We start with one share if $S_0 > K$ and with no share if $S_0 \le K$. Whenever the stock price falls below K (or equals K), the share is sold, and whenever the price returns to a level strictly above K, one share is bought again. Thus, the amount held in the reference asset is given by $\delta_t = -K \mathbf{1}_{\{S_t > K\}}, t \in [0, T]$, and the amount held in the risky asset is given by $\Delta_t = \mathbf{1}_{\{S_t > K\}}, t \in [0, T]$.

1) Verify that the geometric Brownian motion S satisfying (0.1) has the expression

$$S_t = s_0 \exp(\sigma W_t + (\mu - \sigma^2/2)t), \ t \in [0, T].$$

2) Show that for each $t \in (0, T]$, it holds that

$$\mathbb{P}[S_t > K] > 0$$
, and $\mathbb{P}[S_t < K] > 0$.

3) Let $L^{K}(S)$ be the local time of S at K defined as in the lecture notes. Show that $\mathbb{P}[L_{t}^{K}(S) > 0] > 0$ holds for all $t \in (0, T]$.

Hint: Recall that by Girsanov's theorem, there exists a measure \mathbb{Q} which is equivalent to \mathbb{P} on \mathcal{F}_T and such that $(S_t)_{t \in [0,T]}$ is an (\mathbb{F}, \mathbb{Q}) -martingale. You can take the \mathbb{Q} -expectation of $(S_t - K)^+$ and apply Jensen's inequality to get the desired result. Tanaka's formula will be very helpful. You may also use the fact that if S is a continuous martingale and H is a bounded \mathbb{F} -predictable process, then the stochastic integral $\int_0^t H dS$ is also a continuous martingale.

4) Conclude that the so-called stop-loss start-gain strategy (δ, Δ) defined above is not a self-financing strategy.